Simultaneous Enhancement of Charge Separation and Hole Transportation in a TiO 2 –SrTiO 3 Core–Shell Nanowire Photoelectrochemical System
نویسندگان
چکیده
منابع مشابه
Separation and Recovery of Platinum by Magnetic Coreshell Nanostructures Modified with N-(2-aminoethyl)-3- aminopropyltrimethoxysilane
In this paper, Fe3 O4 @SiO2 core/shell magnetic nanostructure has been synthesized and modified by N-(2-aminoethyl)-3-aminopropyltrimethoxysilane (AEAPTMS). Fe3 O4 @SiO2 was used as a novel adsorbent for separation of hexachloroplatinic acid. X-ray diffraction (XRD), scanning electron microscopy (SEM), and FT-IR technique were used to characterize morphologies and surface texturing of these ads...
متن کاملSimultaneously efficient light absorption and charge separation in WO3/BiVO4 core/shell nanowire photoanode for photoelectrochemical water oxidation.
We report a scalably synthesized WO3/BiVO4 core/shell nanowire photoanode in which BiVO4 is the primary light-absorber and WO3 acts as an electron conductor. These core/shell nanowires achieve the highest product of light absorption and charge separation efficiencies among BiVO4-based photoanodes to date and, even without an added catalyst, produce a photocurrent of 3.1 mA/cm(2) under simulated...
متن کاملCharge carrier defect chemistry of nanoscopic SrTiO 3
..................................................................................................................... xvii
متن کاملThree-dimensional high-density hierarchical nanowire architecture for high-performance photoelectrochemical electrodes.
Three-dimensional (3D) nanowire (NW) networks are promising for designing high-performance photoelectrochemical (PEC) electrodes owing to their long optical path for efficient light absorption, high-quality one-dimensional conducting channels for rapid electron-hole separation and charge transportation, as well as high surface areas for fast interfacial charge transfer and electrochemical react...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Advanced Materials
سال: 2017
ISSN: 0935-9648,1521-4095
DOI: 10.1002/adma.201701432